Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(4): e0395423, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38483513

RESUMEN

Coronaviruses (CoVs), including severe acute respiratory syndrome coronavirus 2, can infect a variety of mammalian and avian hosts with significant medical and economic consequences. During the life cycle of CoV, a coordinated series of subgenomic RNAs, including canonical subgenomic messenger RNA and non-canonical defective viral genomes (DVGs), are generated with different biological implications. Studies that adopted the Nanopore sequencer (ONT) to investigate the landscape and dynamics of viral RNA subgenomic transcriptomes applied arbitrary bioinformatics parameters without justification or experimental validation. The current study used bovine coronavirus (BCoV), which can be performed under biosafety level 2 for library construction and experimental validation using traditional colony polymerase chain reaction and Sanger sequencing. Four different ONT protocols, including RNA direct and cDNA direct sequencing with or without exonuclease treatment, were used to generate RNA transcriptomic libraries from BCoV-infected cell lysates. Through rigorously examining the k-mer, gap size, segment size, and bin size, the optimal cutoffs for the bioinformatic pipeline were determined to remove the sequence noise while keeping the informative DVG reads. The sensitivity and specificity of identifying DVG reads using the proposed pipeline can reach 82.6% and 99.6% under the k-mer size cutoff of 15. Exonuclease treatment reduced the abundance of RNA transcripts; however, it was not necessary for future library preparation. Additional recovery of clipped BCoV nucleotide sequences with experimental validation expands the landscape of the CoV discontinuous RNA transcriptome, whose biological function requires future investigation. The results of this study provide the benchmarks for library construction and bioinformatic parameters for studying the discontinuous CoV RNA transcriptome.IMPORTANCEFunctional defective viral genomic RNA, containing all the cis-acting elements required for translation or replication, may play different roles in triggering cell innate immune signaling, interfering with the canonical subgenomic messenger RNA transcription/translation or assisting in establishing persistence infection. This study does not only provide benchmarks for library construction and bioinformatic parameters for studying the discontinuous coronavirus RNA transcriptome but also reveals the complexity of the bovine coronavirus transcriptome, whose functional assays will be critical in future studies.


Asunto(s)
Coronavirus Bovino , Nanoporos , Animales , Bovinos , ARN Subgenómico , ARN Viral/genética , Coronavirus Bovino/genética , Genómica , Exonucleasas , Mamíferos
2.
Nucleic Acids Res ; 51(13): 6578-6592, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37246643

RESUMEN

In this paper, we introduce Gene Knockout Inference (GenKI), a virtual knockout (KO) tool for gene function prediction using single-cell RNA sequencing (scRNA-seq) data in the absence of KO samples when only wild-type (WT) samples are available. Without using any information from real KO samples, GenKI is designed to capture shifting patterns in gene regulation caused by the KO perturbation in an unsupervised manner and provide a robust and scalable framework for gene function studies. To achieve this goal, GenKI adapts a variational graph autoencoder (VGAE) model to learn latent representations of genes and interactions between genes from the input WT scRNA-seq data and a derived single-cell gene regulatory network (scGRN). The virtual KO data is then generated by computationally removing all edges of the KO gene-the gene to be knocked out for functional study-from the scGRN. The differences between WT and virtual KO data are discerned by using their corresponding latent parameters derived from the trained VGAE model. Our simulations show that GenKI accurately approximates the perturbation profiles upon gene KO and outperforms the state-of-the-art under a series of evaluation conditions. Using publicly available scRNA-seq data sets, we demonstrate that GenKI recapitulates discoveries of real-animal KO experiments and accurately predicts cell type-specific functions of KO genes. Thus, GenKI provides an in-silico alternative to KO experiments that may partially replace the need for genetically modified animals or other genetically perturbed systems.


Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual , Animales , Técnicas de Inactivación de Genes , Regulación de la Expresión Génica , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
3.
Emerg Infect Dis ; 29(1): 45-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573518

RESUMEN

The continuing circulation and reassortment with low-pathogenicity avian influenza Gs/Gd (goose/Guangdong/1996)-like avian influenza viruses (AIVs) has caused huge economic losses and raised public health concerns over the zoonotic potential. Virologic surveillance of wild birds has been suggested as part of a global AIV surveillance system. However, underreporting and biased selection of sampling sites has rendered gaining information about the transmission and evolution of highly pathogenic AIV problematic. We explored the use of the Citizen Scientist eBird database to elucidate the dynamic distribution of wild birds in Taiwan and their potential for AIV exchange with domestic poultry. Through the 2-stage analytical framework, we associated nonignorable risk with 10 species of wild birds with >100 significant positive results. We generated a risk map, which served as the guide for highly pathogenic AIV surveillance. Our methodologic blueprint has the potential to be incorporated into the global AIV surveillance system of wild birds.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Taiwán/epidemiología , Filogenia , Virus de la Influenza A/genética , Aves , Aves de Corral , Animales Salvajes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...